1,472 research outputs found

    Vibrating Superconducting Island in a Josephson Junction

    Full text link
    We consider a combined nanomechanical-supercondcuting device that allows the Cooper pair tunneling to interfere with the mechanical motion of the middle superconducting island. Coupling of mechanical oscillations of a superconducting island between two superconducting leads to the electronic tunneling generate a supercurrent which is modulated by the oscillatory motion of the island. This coupling produces alternating finite and vanishing supercurrent as function of the superconducting phases. Current peaks are sensitive to the superconducting phase shifts relative to each other. The proposed device may be used to study the nanoelectromechanical coupling in case of superconducting electronics.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Conductance of a molecular junction mediated by unconventional metal-induced gap states

    Get PDF
    The conductance of a molecular junction is commonly determined by either charge-transfer-doping, where alignment of the Fermi energy to the molecular levels is achieved, or tunnelling through the tails of molecular resonances within the highest-occupied and lowest-unoccupied molecular-orbital gap. Here, we present an alternative mechanism where electron transport is dominated by electrode surface states. They give rise to metallization of the molecular bridge and additional, pronounced conductance resonances allowing for substantial tailoring of its electronic properties via, e.g. a gate voltage. This is demonstrated in a field-effect geometry of a fullerene-bridge between two metallic carbon nanotubes.Comment: 7 pages, 5 figures included; to be published in Europhys. Let

    Electrical Conductance of Molecular Wires

    Full text link
    Molecular wires (MW) are the fundamental building blocks for molecular electronic devices. They consist of a molecular unit connected to two continuum reservoirs of electrons (usually metallic leads). We rely on Landauer theory as the basis for studying the conductance properties of MW systems. This relates the lead to lead current to the transmission probability for an electron to scatter through the molecule. Two different methods have been developed for the study of this scattering. One is based on a solution of the Lippmann-Schwinger equation and the other solves for the {\bf t} matrix using Schroedinger's equation. We use our methodology to study two problems of current interest. The first MW system consists of 1,4 benzene-dithiolate (BDT) bonded to two gold nanocontacts. Our calculations show that the conductance is sensitive to the chemical bonding between the molecule and the leads. The second system we study highlights the interesting phenomenon of antiresonances in MW. We derive an analytic formula predicting at what energies antiresonances should occur in the transmission spectra of MW. A numerical calculation for a MW consisting of filter molecules attached to an active molecule shows the existence of an antiresonance at the energy predicted by our formula.Comment: 14 pages, 5 figure

    Charging induced asymmetry in molecular conductors

    Full text link
    We investigate the origin of asymmetry in various measured current-voltage (I-V) characteristics of molecules with no inherent spatial asymmetry, with particular focus on a recent break junction measurement. We argue that such asymmetry arises due to unequal coupling with the contacts and a consequent difference in charging effects, which can only be captured in a self-consistent model for molecular conduction. The direction of the asymmetry depends on the sign of the majority carriers in the molecule. For conduction through highest occupied molecular orbitals (i.e. HOMO or p-type conduction), the current is smaller for positive voltage on the stronger contact, while for conduction through lowest unoccupied molecular orbitals (i.e. LUMO or n-type conduction), the sense of the asymmetry is reversed. Within an extended Huckel description of the molecular chemistry and the contact microstructure (with two adjustable parameters, the position of the Fermi energy and the sulphur-gold bond length), an appropriate description of Poisson's equation, and a self-consistently coupled non-equilibrium Green's function (NEGF) description of transport, we achieve good agreement between theoretical and experimental I-V characteristics, both in shape as well as overall magnitude.Comment: length of the paper has been extended (4 pages to 6 pages), two new figures have been added (3 figures to 5 figures), has been accepted for PR

    A mesoscopic ring as a XNOR gate: An exact result

    Full text link
    We describe XNOR gate response in a mesoscopic ring threaded by a magnetic flux Ď•\phi. The ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, viz, VaV_a and VbV_b, are applied in one arm of the ring which are treated as the inputs of the XNOR gate. The calculations are based on the tight-binding model and the Green's function method, which numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strength, magnetic flux and gate voltages. Our theoretical study shows that, for a particular value of Ď•\phi (=Ď•0/2=\phi_0/2) (Ď•0=ch/e\phi_0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if both the two inputs to the gate are the same, while if one but not both inputs are high (1), a low output current (0) results. It clearly exhibits the XNOR gate behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure

    Tuning the conductance of molecular junctions: transparent versus tunneling regimes

    Get PDF
    We present a theoretical study of the transport characteristics of molecular junctions, where first-row diatomic molecules are attached to (001) gold and platinum electrodes. We find that the conductance of all of these junctions is of the order of the conductance quantum unit G0G_0, spelling out that they belong to the transparent regime. We further find that the transmission coefficients show wide plateaus as a function of the energy, instead of the usual sharp resonances that signal the molecular levels in the tunneling regime. We use Caroli's model to show that this is a rather generic property of the transparent regime of a junction, which is driven by a strong effective coupling between the delocalized molecular levels and the conduction channels at the electrodes. We analyse the transmission coefficients and chemical bonding of gold/Benzene and gold/Benzene-dithiolate (BDT) junctions to understand why the later show large resistances, while the former are highly conductive.Comment: 9 pages, 7 figure

    Antiresonances in Molecular Wires

    Full text link
    We present analytic and numerical studies based on Landauer theory of conductance antiresonances of molecular wires. Our analytic treatment is a solution of the Lippmann-Schwinger equation for the wire that includes the effects of the non-orthogonality of the atomic orbitals on different atoms exactly. The problem of non-orthogonality is treated by solving the transport problem in a new Hilbert space which is spanned by an orthogonal basis. An expression is derived for the energies at which antiresonances should occur for a molecular wire connected to a pair of single-channel 1D leads. From this expression we identify two distinct mechanisms that give rise to antiresonances under different circumstances. The exact treatment of non-orthogonality in the theory is found to be necessary to obtain reliable results. Our numerical simulations extend this work to multichannel leads and to molecular wires connected to 3D metallic nanocontacts. They demonstrate that our analytic results also provide a good description of these more complicated systems provided that certain well-defined conditions are met. These calculations suggest that antiresonances should be experimentally observable in the differential conductance of molecular wires of certain types.Comment: 22 pages, 5 figure

    Orbital Interaction Mechanisms of Conductance Enhancement and Rectification by Dithiocarboxylate Anchoring Group

    Full text link
    We study computationally the electron transport properties of dithiocarboxylate terminated molecular junctions. Transport properties are computed self-consistently within density functional theory and nonequilibrium Green's functions formalism. A microscopic origin of the experimentally observed current amplification by dithiocarboxylate anchoring groups is established. For the 4,4'-biphenyl bis(dithiocarboxylate) junction, we find that the interaction of the lowest unoccupied molecular orbital (LUMO) of the dithiocarboxylate anchoring group with LUMO and highest occupied molecular orbital (HOMO) of the biphenyl part results in bonding and antibonding resonances in the transmission spectrum in the vicinity of the electrode Fermi energy. A new microscopic mechanism of rectification is predicted based on the electronic structure of asymmetrical anchoring groups. We show that the peaks in the transmission spectra of 4'-thiolato-biphenyl-4-dithiocarboxylate junction respond differently to the applied voltage. Depending upon the origin of a transmission resonance in the orbital interaction picture, its energy can be shifted along with the chemical potential of the electrode to which the molecule is more strongly or more weakly coupled

    Bi-stable tunneling current through a molecular quantum dot

    Get PDF
    An exact solution is presented for tunneling through a negative-U d-fold degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel current exhibits hysteresis if the level degeneracy of the negative-U dot is larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a result of attractive electron correlations in the molecule, which open up a new conducting channel when the voltage is above the threshold bias voltage V2. Once this current has been established, the extra channel remains open as the voltage is reduced down to the lower threshold voltage V1. Possible realizations of the bi-stable molecular quantum dots are fullerenes, especially C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor corrections in the text. To appear in Phys. Rev.
    • …
    corecore